3.678 \(\int \frac {(d+e x)^{5/2}}{\sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=359 \[ \frac {16 \sqrt {-a} d \sqrt {\frac {c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 c^{3/2} \sqrt {a+c x^2} \sqrt {d+e x}}-\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} \left (23 c d^2-9 a e^2\right ) E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 c^{3/2} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}}+\frac {2 e \sqrt {a+c x^2} (d+e x)^{3/2}}{5 c}+\frac {16 d e \sqrt {a+c x^2} \sqrt {d+e x}}{15 c} \]

[Out]

2/5*e*(e*x+d)^(3/2)*(c*x^2+a)^(1/2)/c+16/15*d*e*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/c-2/15*(-9*a*e^2+23*c*d^2)*Ellip
ticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(e*x+d)
^(1/2)*(c*x^2/a+1)^(1/2)/c^(3/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)+16/15*d*(a*e
^2+c*d^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a
)^(1/2)*(c*x^2/a+1)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)/c^(3/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/
2)

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 359, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {743, 833, 844, 719, 424, 419} \[ \frac {16 \sqrt {-a} d \sqrt {\frac {c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 c^{3/2} \sqrt {a+c x^2} \sqrt {d+e x}}-\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} \left (23 c d^2-9 a e^2\right ) E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 c^{3/2} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}}+\frac {2 e \sqrt {a+c x^2} (d+e x)^{3/2}}{5 c}+\frac {16 d e \sqrt {a+c x^2} \sqrt {d+e x}}{15 c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/Sqrt[a + c*x^2],x]

[Out]

(16*d*e*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(15*c) + (2*e*(d + e*x)^(3/2)*Sqrt[a + c*x^2])/(5*c) - (2*Sqrt[-a]*(23*
c*d^2 - 9*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (
-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*c^(3/2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c
*x^2]) + (16*Sqrt[-a]*d*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]
*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*c^(3/2)*S
qrt[d + e*x]*Sqrt[a + c*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 743

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
 + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m + 2*p + 1) - a*e^
2*(m - 1) + 2*c*d*e*(m + p)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2,
0] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m
, p, x]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g*(d + e*x)
^m*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{5/2}}{\sqrt {a+c x^2}} \, dx &=\frac {2 e (d+e x)^{3/2} \sqrt {a+c x^2}}{5 c}+\frac {2 \int \frac {\sqrt {d+e x} \left (\frac {1}{2} \left (5 c d^2-3 a e^2\right )+4 c d e x\right )}{\sqrt {a+c x^2}} \, dx}{5 c}\\ &=\frac {16 d e \sqrt {d+e x} \sqrt {a+c x^2}}{15 c}+\frac {2 e (d+e x)^{3/2} \sqrt {a+c x^2}}{5 c}+\frac {4 \int \frac {\frac {1}{4} c d \left (15 c d^2-17 a e^2\right )+\frac {1}{4} c e \left (23 c d^2-9 a e^2\right ) x}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{15 c^2}\\ &=\frac {16 d e \sqrt {d+e x} \sqrt {a+c x^2}}{15 c}+\frac {2 e (d+e x)^{3/2} \sqrt {a+c x^2}}{5 c}+\frac {\left (23 c d^2-9 a e^2\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx}{15 c}-\frac {\left (8 d \left (c d^2+a e^2\right )\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{15 c}\\ &=\frac {16 d e \sqrt {d+e x} \sqrt {a+c x^2}}{15 c}+\frac {2 e (d+e x)^{3/2} \sqrt {a+c x^2}}{5 c}+\frac {\left (2 a \left (23 c d^2-9 a e^2\right ) \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} c^{3/2} \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}-\frac {\left (16 a d \left (c d^2+a e^2\right ) \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} c^{3/2} \sqrt {d+e x} \sqrt {a+c x^2}}\\ &=\frac {16 d e \sqrt {d+e x} \sqrt {a+c x^2}}{15 c}+\frac {2 e (d+e x)^{3/2} \sqrt {a+c x^2}}{5 c}-\frac {2 \sqrt {-a} \left (23 c d^2-9 a e^2\right ) \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 c^{3/2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {16 \sqrt {-a} d \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 c^{3/2} \sqrt {d+e x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.98, size = 557, normalized size = 1.55 \[ \frac {\sqrt {d+e x} \left (\frac {2 e \left (a+c x^2\right ) (11 d+3 e x)}{c}+\frac {2 \left (\sqrt {c} (d+e x)^{3/2} \left (9 a^{3/2} e^3-23 \sqrt {a} c d^2 e-17 i a \sqrt {c} d e^2+15 i c^{3/2} d^3\right ) \sqrt {\frac {e \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{d+e x}} \sqrt {-\frac {-e x+\frac {i \sqrt {a} e}{\sqrt {c}}}{d+e x}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )+\sqrt {c} (d+e x)^{3/2} \left (-9 a^{3/2} e^3+23 \sqrt {a} c d^2 e+9 i a \sqrt {c} d e^2-23 i c^{3/2} d^3\right ) \sqrt {\frac {e \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{d+e x}} \sqrt {-\frac {-e x+\frac {i \sqrt {a} e}{\sqrt {c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )+e^2 \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \left (-9 a^2 e^2+a c \left (23 d^2-9 e^2 x^2\right )+23 c^2 d^2 x^2\right )\right )}{c^2 e (d+e x) \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}\right )}{15 \sqrt {a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/Sqrt[a + c*x^2],x]

[Out]

(Sqrt[d + e*x]*((2*e*(11*d + 3*e*x)*(a + c*x^2))/c + (2*(e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(-9*a^2*e^2 + 23
*c^2*d^2*x^2 + a*c*(23*d^2 - 9*e^2*x^2)) + Sqrt[c]*((-23*I)*c^(3/2)*d^3 + 23*Sqrt[a]*c*d^2*e + (9*I)*a*Sqrt[c]
*d*e^2 - 9*a^(3/2)*e^3)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d
+ e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*S
qrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + Sqrt[c]*((15*I)*c^(3/2)*d^3 - 23*Sqrt[a]*c*d^2*e - (17*I)*a*Sqrt[c]*d*e
^2 + 9*a^(3/2)*e^3)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*
x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[
a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(c^2*e*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(d + e*x))))/(15*Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )} \sqrt {e x + d}}{\sqrt {c x^{2} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{\frac {5}{2}}}{\sqrt {c x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^(5/2)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

maple [B]  time = 0.10, size = 1312, normalized size = 3.65 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x)

[Out]

-2/15*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(9*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*
c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*EllipticF((-(e*x+d)/(-c*d+(-a*c)^(1/2)
*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*a^2*e^4-6*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)
^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*E
llipticF((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*a*c*d^2
*e^2-8*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c
)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*EllipticF((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2
)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*(-a*c)^(1/2)*a*d*e^3-15*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*
c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*EllipticF((-(e*x+d)
/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*c^2*d^4-8*(-(e*x+d)/(-c*d
+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^
(1/2)*e)*e)^(1/2)*EllipticF((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)
*e))^(1/2))*(-a*c)^(1/2)*c*d^3*e-9*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(
1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*EllipticE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*
c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*a^2*e^4+14*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1
/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*Elli
pticE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*a*c*d^2*e^
2+23*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^
(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*EllipticE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*
e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*c^2*d^4-3*c^2*e^4*x^4-14*c^2*d*e^3*x^3-3*a*c*e^4*x^2-11*c^2*d^2*e^2*x^2-14*a*c
*d*e^3*x-11*a*c*d^2*e^2)/c^2/e/(c*e*x^3+c*d*x^2+a*e*x+a*d)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{\frac {5}{2}}}{\sqrt {c x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (d+e\,x\right )}^{5/2}}{\sqrt {c\,x^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(5/2)/(a + c*x^2)^(1/2),x)

[Out]

int((d + e*x)^(5/2)/(a + c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x\right )^{\frac {5}{2}}}{\sqrt {a + c x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)**(5/2)/sqrt(a + c*x**2), x)

________________________________________________________________________________________